Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A new ternary phase has been synthesized and structurally characterized. BaLi x Cd 13– x ( x ≈ 2) adopts the cubic NaZn 13 structure type (space group Fm 3 ¯ c , Pearson symbol cF 112) with unit cell parameter a = 13.5548 (10) Å. Structure refinements from single-crystal X-ray diffraction data demonstrate that the Li atoms are exclusively found at the centers of the Cd 12 -icosahedra. Since a cubic BaCd 13 phase does not exist, and the tetragonal BaCd 11 is the most Cd-rich phase in the Ba–Cd system, BaLi x Cd 13– x ( x ≈ 2) has to be considered as a true ternary compound. As opposed to the typical electron count of ca. 27 e -per formula unit for many known compounds with the NaZn 13 structure type, BaLi x Cd 13– x ( x ≈ 2) only has ca. 26 e -, suggesting that both electronic and geometric factors are at play. Finally, the bonding characteristics of the cubic BaLi x Cd 13– x ( x ≈ 2) and tetragonal BaCd 11 are investigated using the TB-LMTO-ASA method, showing metallic-like behavior.more » « less
-
Abstract The elastic behavior of a material can be a powerful tool to decipher thermal transport. In thermoelectrics, measuring the elastic moduli—directly tied to sound velocity—is critical to understand trends in lattice thermal conductivity, as well as study bond anharmonicity and phase transitions, given the sensitivity of elastic moduli to the chemical bonding. In this review, we introduce the basics of elasticity and explain the origin of high‐temperature lattice softening from a bonding perspective. We then review elasticity data throughout classes of thermoelectrics, and explore trends in sound velocity, anharmonicity, and thermal conductivity. We reveal how experimental sound velocities can improve the accuracy of common thermal conductivity models and present a critical discussion of Grüneisen parameter estimates from elastic moduli. Readers will be equipped with tools to leverage elasticity measurements or calculations to accurately interpret thermal transport trends.more » « less
-
A M 2 X 2 compounds that crystallize in the CaAl 2 Si 2 structure type have emerged as a promising class of n- and p-type thermoelectric materials. Alloying on the cation (A) site is a frequently used approach to optimize the thermoelectric transport properties of A M 2 X 2 compounds, and complete solid solubility has been reported for many combinations of cations. In the present study, we investigate the phase stability of the AMg 2 Sb 2 system with mixed occupancy of Mg, Ca, Sr, or Ba on the cation (A) site. We show that the small ionic radius of Mg 2 + leads to limited solubility when alloyed with larger cations such as Sr or Ba. Phase separation observed in such cases indicates a eutectic-like phase diagram. By combining these results with prior alloying studies, we establish an upper limit for cation radius mismatch in A M 2 X 2 alloys to provide general guidance for future alloying and doping studies.more » « less
-
Rare-earth (RE) tellurides have been studied extensively for use in high-temperature thermoelectric applications. Specifically, lanthanum and praseodymium-based compounds with the Th3P4 structure type have demonstrated dimensionless thermoelectric figures of merit (zT) up to 1.7 at 1200 K. Scandium, while not part of the lanthanide series, is considered a RE element due to its chemical similarity. However, little is known about the thermoelectric properties of the tellurides of scandium. Here, we synthesized scandium sesquitelluride (Sc2Te3) using a mechanochemical approach and formed sintered compacts through spark plasma sintering (SPS). Temperature-dependent thermoelectric properties were measured from 300–1100 K. Sc2Te3 exhibited a peak zT = 0.3 over the broad range of 500–750 K due to an appreciable power factor and low-lattice thermal conductivity in the mid-temperature range.more » « less
-
Compounds that crystallize in the layered CaAl 2 Si 2 structural pattern have rapidly emerged as an exciting class of thermoelectric materials with attractive n- and p-type properties. More than 100 AM 2 X 2 compounds that form this structure type – characterized by anionic M 2 X 2 slabs sandwiched between layers of octahedrally coordinated A cations – provide numerous potential paths to chemically tune every aspect of thermoelectric transport. This review highlights the chemical diversity of this structure type, discusses the rules governing its formation and stability relative to competing AM 2 X 2 structures ( e.g. , ThCr 2 Si 2 and BaCu 2 S 2 ), and attempts to bring some of the most recently discovered compounds into the spotlight. The discussion of thermoelectric transport properties in AM 2 X 2 compounds focuses primarily on the intrinsic parameters that determine the potential for a high figure of merit: the band gap, effective mass, degeneracy, carrier relaxation time, and lattice thermal conductivity. We also discuss routes that have been used to successfully control the carrier concentration, including controlling the cation vacancy concentration, doping, and isoelectronic alloying (approaches that are highly interdependent). Finally, we discuss recent progress made towards n-type doping in this system, highlight opportunities for further improvements, as well as open questions that still remain.more » « less
-
Abstract AMXcompounds with the ZrBeSi structure tolerate a vacancy concentration of up to 50 % on theM‐site in the planarMX‐layers. Here, we investigate the impact of vacancies on the thermal and electronic properties across the full EuCu1−xZn0.5xSb solid solution. The transition from a fully‐occupied honeycomb layer (EuCuSb) to one with a quarter of the atoms missing (EuZn0.5Sb) leads to non‐linear bond expansion in the honeycomb layer, increasing atomic displacement parameters on theMand Sb‐sites, and significant lattice softening. This, combined with a rapid increase in point defect scattering, causes the lattice thermal conductivity to decrease from 3 to 0.5 W mK−1at 300 K. The effect of vacancies on the electronic properties is more nuanced; we see a small increase in effective mass, large increase in band gap, and decrease in carrier concentration. Ultimately, the maximumzTincreases from 0.09 to 0.7 as we go from EuCuSb to EuZn0.5Sb.more » « less
An official website of the United States government
